

Preparation
● Load up the VM in VirtualBox
● Open a terminal window
● Move to directory ~/williams

– source conda.sh

– conda activate intel_env

● Move to the directory ~/williams/python_testing
– git pull

– pip install -r requirements.txt

Make testing easy

py test

Matt Williams, University of Bristol

Test runner
● pytest comes with a flexible test runner which

can find your tests
● Searches inside files called test_*.py or
*_test.py for functions prefixed with test_

● Once collected, runs them all and prints results
● All is configurable, can also run doctests,

different prefixes, extra plugins etc.
● Look at pytest --help for more information

Write a test function
● Name the file and function correctly
● A test passes if the function finishes

running without error
● A test fails if any exception is

uncaught
● pytest overrides Python’s assert

statement to make it more useful

First test

from my_lib import add_elements

def test_add():
 assert add_elements([1, 2], [3, 4]) == [4, 6]

No need to import any pytest module

Start name with ‘test_’

Nothing explicitly pytest-specific in the source code

Copy this out into test_my_lib.py and run pytest.
Try breaking the test to see what failures look like.
Try running with pytest -v for more info An. 1

Morse code
● There is a file morse.py in the directory.

● Make a new test file which contains two test
functions:
– One for each function in morse.py

– Each test only needs to check a few letters

– Make sure you use an assert in each

– Run them with pytest on the command line

– Make sure they can fail

– Tip: “sos” → “... --- ...” and vice versa

An. 2

Parametrising tests
● Often you want to run a test with lots

of different inputs
● Want an individual pass/fail for each
● Can use a special pytest decorator

with a list of arguments
● We’ll start by translating previous

example to a parametrised form

Parametrised test

import pytest

from my_lib import add_elements

@pytest.mark.parametrize('a,b,answer', [
 ([1, 2], [3, 4], [4, 6]),
])
def test_add(a, b, answer):
 assert add_elements(a, b) == answer

Explicitly using the module this time so must import it

Name the arguments in a string

Refer to those names in
your test function

They will contain the specified
values each time the test is run

Copy this out and run pytest.
Add a few more parameter tuples and run pytest again.
Try changing the argument names (answer, a and b) An. 3

Catching exceptions
● Sometimes you want your code to

‘fail’
● Test for expected exceptions with a
pytest.raises context manager

● Given the name of an exception, it
will only pass if that exception is
raised

Catching exceptions

...

def test_wrong_type():
 with pytest.raises(TypeError):
 add_elements([1, 2], 6)

Copy this out and run pytest.
What happens if the exception is not raised in the block?

Give the name of the exception
that you expect to be raised

Any exceptions raised in the block
will be processed

An. 4

Set up with fixtures
● Fixtures allow reusable set-up and

tear-down of test environments
● Useful for complex or heavy setup

logic
● They can be reused between tests
● Many can be combined and layered

together

Simplest dummy fixture

import pytest
from my_lib import add_elements

@pytest.fixture
def pair_of_lists():
 return ([1, 2], [3, 4])

def test_add(pair_of_lists):
 list1 = pair_of_lists[0]
 list2 = pair_of_lists[1]
 assert add_elements(list1, list2) == [4, 6]

Use the decorator to turn this function into a fixture

Return value is used as value of fixture

Refer to fixture by name.
Return value is assigned to variable.

An. 5

First useful fixture
import lzma
import pytest
from my_lib import get_gutenberg_text, word_count

@pytest.fixture
def warandpeace():
 with lzma.open('warandpeace.txt.xz', mode='rt') as f:
 text = f.read()
 book_text = get_gutenberg_text(text)
 return book_text

def test_count_lines(warandpeace):
 assert len(warandpeace.split('\n')) == 6567

Copy this out and run pytest.
What happens if you misspell the fixture name?

Use the decorator to make this function a fixture

Return value is used as value of fixture

Refer to fixture by name.
Return value is assigned to variable.

An. 6

Mocking
● Mocking allows you you to fake-up the environment

the test runs in
● We can do this in pytest using the pytest-mock

package
● Useful if you are testing something with side-effects
● Also useful for slow code
● Should complement integration tests, not replace

them
● Require knowledge of the internals of the thing

you’re testing

Mocking

from my_lib import count_capital_words_in_website as cw
from types import SimpleNamespace as NS

def test_count_words(mocker):
 requests_get = mocker.patch("requests.get",
 return_value=NS(text="Set of words With Capitals"))

 assert cw("http://example.com") == 3
 requests_get.assert_called_once()

Copy this out and run pytest.
Change the return_value to make sure it works as you expect

Use the mocker fixture from pytest-mock

patch takes name of function to mock

We can specify the fake return value

my_lib has a function which downloads from the internet using requests.
We don’t want this happening in the test suite as it might be flaky and slow.
We can use a mock to fake the internet part.

We can assert that the function was called

Mocking
● Look at read_databases.py

● We have a function (read_database) which calls other
functions (BAH, NMHD, LPMS)

● We want to make sure it does what it says
● Starting from what is in test_read_databases.py,

mock away the calls to BAH, NMHD and LPMS and check
that they would have been called.

● Can we check what arguments they would be called
with?
– Tip: behind the scenes, pytest-mock uses Python’s
unittest.mock

An. 8

https://github.com/pytest-dev/pytest-mock

Auto-generate tests
● With our first parametrized test we gave

an explicit list of examples
● Hypothesis can generate examples for us
● We define the constraints and it

generates a minimal failing example
● Strategies tell Hypothesis how to

generate examples

Hypothesis

from hypothesis import given
from hypothesis.strategies import lists, integers

from my_lib import add_elements

@given(lists(integers()), lists(integers()))
def test_add(a, b):
 add_elements(a, b)

Copy this out and run pytest.
Can you fix the bug in my_lib.py?

Strategies define how to generate examples

@given() assigns strategies to arguments

Each argument will be set to a list of integers

An. 9

https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock

Hypothesis - Morse
from hypothesis import given
from hypothesis.strategies import lists, sampled_from

from morse import encode, decode, letter_to_morse

@given(
 lists(
 elements=sampled_from(
 list(letter_to_morse.values())
)))
def test_roundtrip_morse(morse):
 morse = ' '.join(morse)
 assert encode(decode(morse_message)) == morse

Copy this out and run pytest.
Add a second test which checks English → Morse → English
(tip: check the string Python module and https://v.gd/tgyKOL)
Do you find a bug/missing feature in encode?

We’ll pass in lists..

… of elements samples from...

… our Morse letters.

Check the round-trip

An. 10

https://hypothesis.readthedocs.io/
https://hypothesis.readthedocs.io/en/latest/data.html

Hypothesis - pandas
● Read the code in analyse_weather.py

● We want to test the hottest_summer function.

● Using Hypothesis, write a test based on the code below which fully
tests the advertised interface

● You’ll need the Hypothesis docs for Pandas and general strategies

from hypothesis import given
from hypothesis.extra.pandas import columns, \
 data_frames, range_indexes
import hypothesis.strategies as st
import pandas as pd
from analyse_weather import hottest_summer

@given(...)
def test_hottest_summer_auto(df):
 assert not pd.isnull(hottest_summer(df))

An. 11

What’s next
● Other pytest functions like pytest.approx

and pytest.mark.skipif

● Doctests (see examples in morse.py)

● Useful built-in fixtures like tmpdir

● Plugins like pytest-cov for coverage
analysis

● Start writing tests!

https://hypothesis.readthedocs.io/en/latest/data.html

	Slide 1
	Start
	Test runner
	Write a test function
	First test
	Slide 8
	Parametrising tests
	Parametrised test
	Catching exceptions
	Catching exceptions example
	Set up with fixtures
	Slide 14
	First fixture
	Slide 16
	Slide 17
	Slide 18
	Auto-generate tests
	Hypothesis
	Slide 21
	Slide 22
	What’s next

